

Semi-Supervised Semantic Segmentation with Cross Pseudo Supervision

Xiaokang Chen^{1*} Yuhui Yuan² Gang Zeng¹ Jingdong Wang²

¹Key Laboratory of Machine Perception (MOE), Peking University

²Microsoft Research Asia

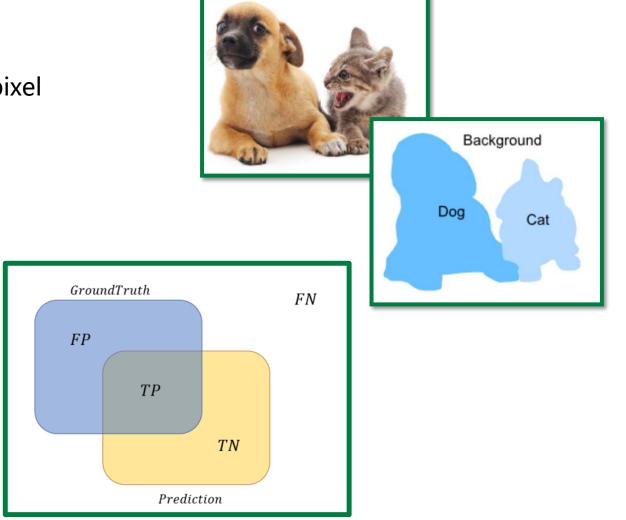
Semantic Segmentation

Semantic Segmentation

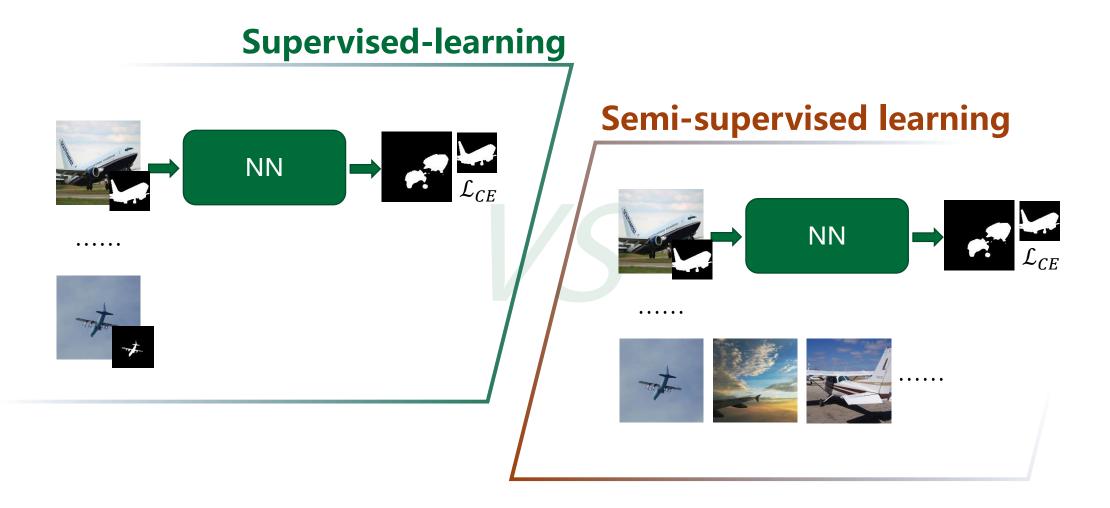
- Category-label prediction for each pixel
- A pixel-wise classification
- mask

IoU

IoU = $\frac{\text{Prediction} \cap \text{GroundTruth}}{\text{Prediction} \cup \text{GroundTruth}}$ $= \frac{\text{TP}}{\text{TP} + \text{TN} + FP}$



Semi-supervised learning



Self-training

Predict label for unlabeled sample & enlarge train set

Algorithm 1 Self-training.

```
    Initialize:
    Given (X<sub>train</sub>, y<sub>train</sub>) = (X<sub>l</sub>, y<sub>l</sub>)
    while stopping criteria not met do
    Train classifier C<sub>int</sub> from (X<sub>train</sub>, y<sub>train</sub>)
    Use C<sub>int</sub> to predict class label y<sub>u</sub> of X<sub>u</sub>
    Select confidence sample (X<sub>conf</sub>, y<sub>conf</sub>); (X<sub>conf</sub>, y<sub>conf</sub>) ∈ (X<sub>u</sub>, y<sub>u</sub>)
    Remove selected unlabeled data X<sub>u</sub> ← X<sub>u</sub> − X<sub>conf</sub>
    Combine newly labeled data (X<sub>train</sub>, y<sub>train</sub>) ← (X<sub>l</sub>, y<sub>l</sub>) ∪ (X<sub>conf</sub>, y<sub>conf</sub>)
    end while
```


Consistency Regularization

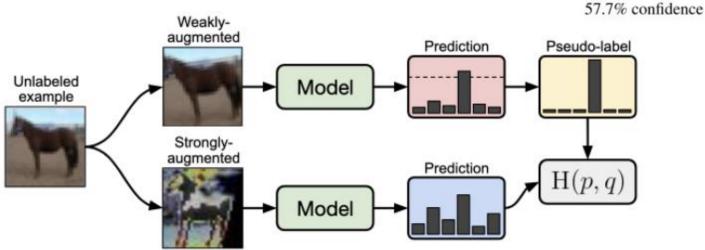
Enforce predictions consistency with various perturbations of input

+.007 ×



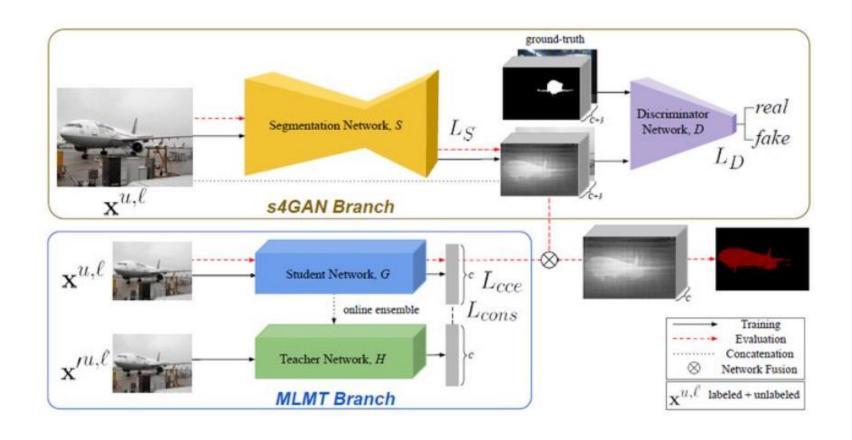
 $x + \epsilon sign(\nabla_x J(\theta, x, y))$ "gibbon"

99.3 % confidence



[1]Goodfellow I J, Shlens J, Szegedy C. Explaining and harnessing adversarial examples[J]. arXiv preprint arXiv:1412.6572, 2014. [2] Sohn K, Berthelot D, Li C L, et al. Fixmatch: Simplifying semi-supervised learning with consistency and confidence[J]. arXiv preprint arXiv:2001.07685, 2020.

GAN-Based Methods



Generator:

Input: image

Output: C-channel mask

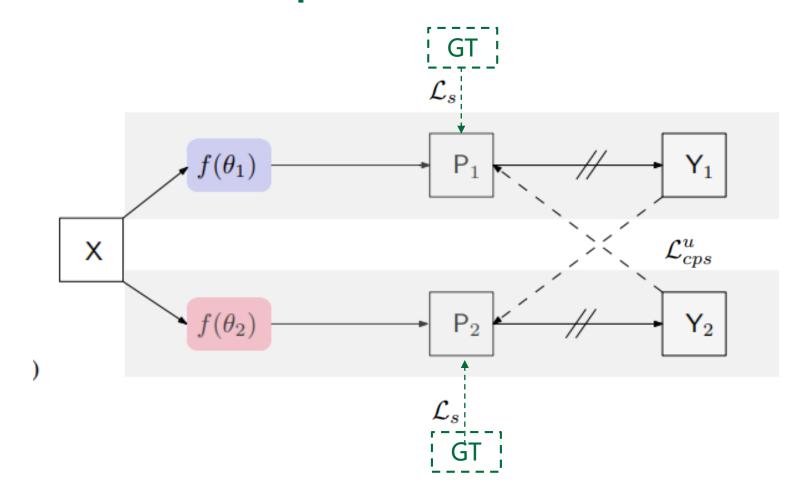
Discriminator:

Input: C-channel mask ⊕

Image

Output: real/fake

Cross Pseudo Supervision



 $f(\theta_1), f(\theta_2)$:
Same model
architecture with
different initialization
//: stop gradient

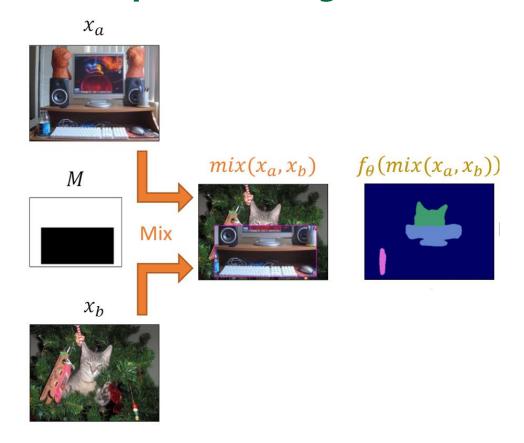
$$\mathcal{L} = \mathcal{L}_s + \lambda \mathcal{L}_{cps}$$

implement:
DeepLab v3+(ResNet)

Cutmix

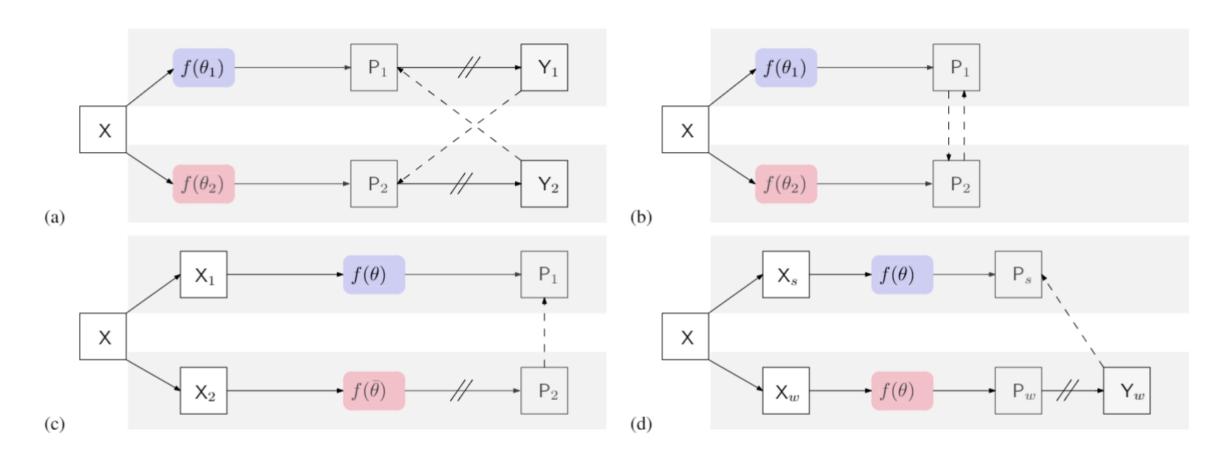
	ResNet-50	Mixup [48]	Cutout [3]	CutMix
Image				
Label	Dog 1.0	Dog 0.5 Cat 0.5	Dog 1.0	Dog 0.6 Cat 0.4
ImageNet	76.3	77.4	77.1	78.6
Cls (%)	(+0.0)	(+1.1)	(+0.8)	(+2.3)
ImageNet	46.3	45.8	46.7	47.3
Loc (%)	(+0.0)	(-0.5)	(+0.4)	(+1.0)
Pascal VOC	75.6	73.9	75.1	76.7
Det (mAP)	(+0.0)	(-1.7)	(-0.5)	(+1.1)

Cutmix in Semi-supervised Segmentation



[3] French G, Laine S, Aila T, et al. Semi-supervised semantic segmentation needs strong, varied perturbations [C] //British Machine Vision Conference. 2020 (31).

Comparation



Experiment

Overview

Table 1: Comparison with state-of-the-arts on the PASCAL VOC 2012 val set under different partition protocols. All the methods are based on DeepLabv3+.

Method	ResNet-50				ResNet-101			
	1/16 (662)	1/8 (1323)	1/4 (2646)	1/2 (5291)	1/16 (662)	1/8 (1323)	1/4 (2646)	1/2 (5291)
MT [32]	66.77	70.78	73.22	75.41	70.59	73.20	76.62	77.61
CCT [27]	65.22	70.87	73.43	74.75	67.94	73.00	76.17	77.56
CutMix-Seg [11]	68.90	70.70	72.46	74.49	72.56	72.69	74.25	75.89
GCT [17]	64.05	70.47	73.45	75.20	69.77	73.30	75.25	77.14
Ours (w/o CutMix Aug.)	68.21	73.20	74.24	75.91	72.18	75.83	77.55	78.64
Ours (w/ CutMix Aug.)	71.98	73.67	74.90	76.15	74.48	76.44	77.68	78.64

Experiment

Overview

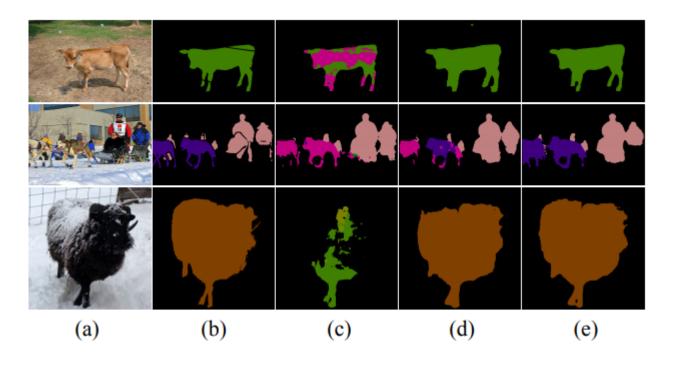


Figure 6: **Example qualitative results from PASCAL VOC** 2012. (a) input, (b) ground truth, (c) supervised only, (d) ours (w/o CutMix Aug.), and (e) ours (w/ CutMix Aug.). All the approaches use DeepLabv3+ with ResNet-101 as the segmentation network.

Experiment

Losses

Losses				PASCAL VOC 2012		Cityscapes		
\mathcal{L}_s	\mathcal{L}_{cps}^{l}	\mathcal{L}^u_{cps}	\mathcal{L}_{cpc}^{l}	\mathcal{L}^u_{cpc}	ResNet-50	ResNet-101	ResNet-50	ResNet-101
✓					69.43	72.21	70.32	72.19
✓	✓				69.99	72.98	71.73	73.08
✓		✓			73.00	75.83	73.97	75.28
✓	✓	✓			73.20	75.85	74.39	75.71
✓			1	1	71.23	74.01	72.03	73.77

With single model(pseudo label)

Method	1/16	1/8	1/4	1/2
SPS (w/o CutMix Aug.)	59.54	69.05	72.55	75.17
Ours (w/o CutMix Aug.)	68.21	73.20	74.24	75.91
SPS (w/ CutMix Aug.)	65.62	71.27	73.70	74.87
Ours (w/ CutMix Aug.)	71.98	73.67	74.90	76.15

With self-training

Method	ResN	et-50	ResNet-101						
Wethod	1/4	1/2	1/4	1/2					
PASCAL VOC 2012									
Ours	74.24	75.91	77.55	78.64					
Self-Training	74.47	75.97	76.63	78.15					
Ours + Self-Training	74.96	76.60	77.60	78.76					